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Effect of noise on spinodal decomposition 
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Received 12 April 1988 

Abstract. The long-time behaviour of two-dimensional systems undergoing spinodal 
decomposition is studied numerically with the aid of a cell-dynamical approach both 
without and with noise. In both cases, the representative length scale of the pattern behaves 
as I ( ! )  - P', where the exponent 4 crosses over from -0.28 to -0.33. The crossover time 
increases with an increase in amplitude of the noise. 

An outstanding problem in studying the kinetics of phase transitions is that of the 
mechanisms whereby ordering takes place in thermodynamically unstable systems, e.g. 
quenched binary alloys (Gunton et al 1983, Lebowitz et al 1983, Furukawa 1985). The 
ordering process depends critically on whether or not there is a conserved order 
parameter. In this letter we numerically demonstrate, using a cell-dynamical system 
approach, that there is a crossover in the domain growth law for the conserved case 
from I( t )  - where I( t )  is the typical domain size at time t. Further- 
more, we demonstrate the existence of a 'scaling regime' (explained later) in which 
the effect of noise appears to be unimportant. The results presented here are for 
two-dimensional systems with critical quenching, i.e. the spatial integral of the order 
parameter is zero for all times. This is an example of what has been termed 'spinodal 
decomposition'. 

The theoretical study of phase separation in the conserved case dates back to the 
classic work of Cahn and Hilliard (1958) and the work of Cook (1970), who considered 
a (phenomenological) partial differential equation model, now called the Cahn- 
Hilliard-Cook (CHC) equation. 

Interest in the study of spinodal decomposition was revitalised by the observation 
of an approximate scaling law in Monte Carlo simulations of the process (Marro et 
a1 1979, Lebowitz et a1 1982, Sahni and Gunton 1980). These suggested that the 
normalised form factor S(k, t )  has a scaling regime in which it behaves as 

to I( t )  - 

S(k, t )  = l ( r ) d @ ( k I ( t ) )  

where k is the wavevector, t the time, @ a universal function, I ( ? )  a time-dependent 
length scale which behaves as I (  t )  - t" for some positive number 4 and d is the spatial 
dimensionality. (It should be noted that, previous to these results, Binder and Stauffer 
(1974) and Furukawa (1977,1978,1979) had discussed possible scaling of the form 
factor.) Marro et a1 (1979) performed extensive Monte Carlo simulations using a 
spin-exchange kinetic Ising model. They found that 4 varies between 0.19 and 0.3 
depending on the depth of quenching, the off-criticality and the time of evolution. 
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There is an approximate scaling in the sense that data for fairly long periods of time 
can be fitted to master curves. However, the shape of the master curve appears to 
change gradually in time so that data for very long time periods cannot be fitted to a 
single curve. Huse’s Monte Carlo results (Huse 1986) suggest (by extrapolation) a 
late-stage domain growth law of I (  t )  - 

The CHC equation has also been the subject of considerable numerical work. It 
was solved by Petschek and Metiu (1985) and (without noise) by Miyazaki et al(1983). 
However, they did not study the scaling regime or the domain growth law. Recently, 
Gawlinski et al (1987) reported a numerical study of the CHC equation. They found 
a power-law behaviour with 4 - 0.33. 

Given the numerical effort involved in successfully simulating the CHC equation 
or performing a Monte Carlo simulation, it is desirable to have computationally efficient 
models to study the scaling regime. We have proposed (Oono and Puri 1987) cell- 
dynamical system (CDS) models of spinodal decomposition, which are highly efficient 
in terms of computer time usage. These models impose the space-time coarsening, 
implicit in conventional phenomenological models (e.g. the CHC equation) by using a 
discretised space-time lattice, which can be considered the result of coarse graining 
the microscopic model. We believe our models are in the same universality class as 
the CHC equation. Although we cannot derive our models by conventional discretisation 
of the CHC equation, we have proposed a new discretisation scheme which results in 
our models starting from the CHC equation?. Our model for the conserved order 
parameter case is 

+ ( t + L  n)= S[+(t, n)l-((S[+(t ,  n ) I -+( t ,  n))) 

S[IL(t, n) I=f ($ ( t ,  n))+D(( (+( t ,  n ) ) ) - + ( t ,  n)). 

(2) 

(3) 
In (2), +( t, n) is the value of the order parameter in the cell n at time t, D is a positive 
constant and f is an injection on R (real number line) with two hyperbolic sinks and 
one hyperbolic source. The sinks correspond to the two new ordered states after 
quenching. The source corresponds to the single disordered state before quenching. 
The exact form o f f  is not crucial. We believe that any map f with properties as 
described above gives results in the same universality class (Oono and Puri 1988a). 
We choose f ( x )  = A tanh x and D = 0.5. In Ooni and Puri (1987), we presented results 
for A = 1.3. In (3) ,  ((*)) - * is the isotropised discrete Laplacian. We use the following 
definition of ((a)) on the square lattice: 

(( +( t, n))) = A 

where 

(+ in the nearest-neighbour cells) 

+ (+ in the next-nearest-neighbour cells). (4) 
The model defined by (2) and (3) is deterministic. To include the effects of noise 

we use an analogy to the CHC equation where we can use for the noise 

a ( r ,  t )  = V  q ( r ,  t )  ( 5 )  

t One can also amve at a discrete space-time model by conventional discretisation of a partial differential 
equation like the CHC equation. If the time increment is small, the modelling is accurate but too many 
updates are required before the scaling regime (if any) is reached. However, if the time increment is large, 
then the single-cell dynamics becomes oscillatory or even chaotic (Yamaguti and Hatano 1979) whereas we 
expect it  to be purely relaxational. Thus, it is not numerically efficient to use the usual discretisation of the 
CHC equation to model spinodal decomposition for long times. 
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where q( r ,  t )  is a vector white noise with Gaussian components which satisfy the usual 
fluctuation-dissipation relation 

(v i (  r, t )  vj ( r ‘ ,  t ’ ) )  = 6,6 ( r  - r ’ )6(  t - t ’ ) ,  

Thus, in our discrete space-time model we can include noise as follows: 

4(t+ 1, n) = S[+(t, n)1-((9[4(t ,  n ) l -  4(r, n))) 

where B (the noise amplitude) is a third parameter in our model (the others being D 
and the parameter A in f)t. The noise vector (q,, vy )  ( t ,  n )  consists of two random 
numbers (uniformly distributed in [-1, 13) assigned at each time t to each lattice site 
(= (n,, n,)). We have also performed simulations in which noise has a Gaussian 
distribution and this made no difference to our results. Furthermore, we have also 
studied the evolution patterns in the case where we started off with a zero (or non-zero) 
amplitude of noise and switched on (or off) the noise after a certain number of 
iterations. The patterns rapidly (within about 10 iterations) went to the noisy (or 
noiseless) forms we demonstrate below. This indicates that there is no cumulative 
effect of noise. Thus, any reasonable distribution of noise should give the same results. 

We have performed simulations on a two-dimensional lattice of size 100 x 100 with 
periodic boundary conditions. Here we report results of representative simulations 
with f ( x )  = 1.3 tanh x, D = 0.5 and B = 0.0 (noiseless case) or 0.3, 0.5 (noisy case)$. 
We have actually used a variety of functions f and different values of 0, B. Detailed 
results will be presented elsewhere (Puri and Oono 1988). 

All calculations presented here were done on a V U - 7 5 0  computer (without using 
array processors). One update of the lattice in the noiseless case took 1.77 s of CPU 

time. The corresponding CPU time for the noisy case was 2.98 s. Form factors were 
calculated as averages over 20 different initial configurations. This was sufficient to 
get smooth master functions. (An independent confirmation of our results has been 
obtained by Yeung who calculated statistical averages over 30 different initial configur- 
ations. Notice that the statistical error is only halved even if we use as many as 80 
initial configurations in our statistics.) The raw data for the form factor are defined 
as a function of vector k rather than scalar k Notice that k can take up values (for 
a lattice of size N x  N )  2 r ( m x ,  m , ) / N ,  where m, and my have integer values from 
- N / 2  to ( N / 2 )  - 1. To scalarise our data for the form factor, we average it over shells 
of inner radius ( n  - 1)6k (with 6k = (27r /N)  x 0.5, N being the lattice size) and outer 
radius n6k (where n is an integer) in the Brillouin zone. The scalar function thus 
obtained is what we term S(k, 1 )  and the corresponding k value is assigned as 

t If we regard our CDS models as arising from a discretisation (albeit an unconventional one) of the 
corresponding partial differential equations, the noise amplitude B is related to the kinetic coefficient and 
the discretisation mesh size through the fluctuatiotl-dissipation theorem. Thus, changing B would correspond 
to changing the kinetic coefficient, if we keep the mesh size fixed. However, in the usual interpretation of 
the deterministic CHC equation we simply discard the noise while retaining the usual kinetic coefficient. 
Thus our comparison in this letter is between the noisy case (which does satisfy the fluctuation-dissipation 
theorem) and the deterministic case (which does not satisfy the fluctuation-dissipation theorem). It should 
be noted, furthermore, that irrespective of the kinetic coefficient we would expect the asymptotic behaviours 
to be universal. This is bome out by results we present in a forthcoming paper. 
$We do not discuss here relations between parameters in our models and those in other (Monte Carlo, 
Langevin) models. However, we note that results shown here correspond to the case of deep quenching. 
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( n  - 1)6k + Sk/2 (except in the case n = 0, where the corresponding k value is assigned 
as 0). 

In figure 1 we show the patterns obtained from the same inital conditions 
(namely, randomly distributed values of the order parameter in the range jz0.125) for 
the noiseless and noisy (B =0.3) cases. For the noiseless case (shown in the upper 
frames) the boundary walls are smooth and regular. In the noisy (B = 0.3) case (shown 
in the lower frames) the pattern size at comparable times is of the same order as in 
the noiseless case, but the boundary walls are ragged. In figure 2 we show a typical 
pattern for the case B = 0.5 with the same initial conditions as before. This pattern is 
more ragged than the pattern for the case B = 0.3 and is similar to previously published 
patterns from Monte Carlo simulations (Gawlinski et a1 1985, Huse 1986). 

Figure 1. Thin arrows indicate time evolution of patterns for the noiseless case and thick 
arrows that of the noisy ( B  = 0.3) case, both from the same initial random configuration 
(labelled 0). The numbers denote necessary time steps from 0. Only points with positive 
order parameter are marked. 

5040 

Figure 2. Typical pattern for the strongly noisy ( E  = 0.5) case after 5000 updates. 
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-0.4.- 

In figure 3 we show the dependence of ( k ) ( t )  on time for the noiseless and the 
noisy cases: 

0 

I U )  

(k)(r)=lOmdkkS(k,  r )  (IomdkS(k, ) ) ) - I .  

-0.90.- 

-1.00- 
A 

5 
c - 

This is related to the typical domain size as (k)( t )  ot I (  t ) - ' .  Thus we would expect that 
(if scaling holds good) 

( k ) ( t ) c c  r+. (9) 

Numerically, we compute (k)( t )  by considering all k values up to half the reciprocal 
lattice size. Figure 3 ( a )  shows ln(k)(r) against In t for the noiseless case. The curve 

1 ( b )  . 
0 

0 

0 

0 

0 . 

t 
-0.61 

$ 1  = -0.8 

I n  f I+ =o 33 

Figure 3. Dependence of In(k) on In r for (a )  the noiseless case and ( b )  the noisy ( E  = 0.3) 
case. The inset figure shows the data affinely transformed so as to clearly exhibit the 
crossover behaviour. 
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shows two linear portions indicating that there is a power-law domain growth but 
values of 4 are different in the two regimes. The inset figure shows the data affinely 
transformed so as to clearly exhibit the crossover behaviour. Essentially, the affine 
transform used here gives the visual effect of holding the graph almost horizontally at 
eye level, and then looking along the line of points. We prefer this method to putting 
straight lines (which may cause prejudice in the observer) through the data points. 
The slope of the two portions gives the exponent 4. There is an apparent crossover 
at t - 2750 iterations from an exponent? of 4 - 0.28 to 4 - 0.33 (curvature-dominated 
growth). The earlier time exponent 4 - 0.28 may suggest a surface diffusion mechanism 
(see Furukawa’s (1985) review article which gives 4 = 0.25). Figure 3( b) shows In( k)(  t )  
against Int for the noisy (B = 0.3) case. Here, the crossover is delayed to about 3700 
iterations. Initially the exponent is 4 - 0.27 and then crosses over to 4 - 0.33. Recently, 
exactly the same model without noise was studied extensively by Chakrabarti and 
Gunton (1987); they gave 4 - 0.33 for more than two decades. 

In figure 4 we have plotted the scaled scattering function S(k, t ) ( ( k ) ( r ) ) *  as a 
function of k / ( k ) (  t )  for different times. In the scaling regime this should be a universal 
curve. Figure 4 shows data from times 1800,2400,3000,3600 and 4200 for the noiseless 
case (denoted by circles). They can be seen to lie on a smooth master curve. Notice 
that data are chosen from either side of the exponent crossover time; the master nature 
of the curve is insensitive to the value of the growth exponent at that timeS. The points 
marked by crosses in figure 4 correspond to the noisy ( B  = 0.3) case. The data for the 

12r 
I 

Figure 4. Scaled scattering function S(k, f ) ( (k)(f))2 as a function of k / ( k ) ( r )  for the 
noiseless and noisy ( B  = 0.3) cases. The circles are data from the noiseless case at times 
1800, 2400, 3000, 3600 and 4200 (through the crossover). The crosses are data from the 
noisy case at times 2000,2900, 3800, 4700 and 5600 (also through the crossover). Though 
it is not evident on the scale of this figure, the tails of the curves do not yet lie on a master 
curve. 

t Exponent values have possible errors of kO.01. This error is estimated by calculating the slope of extreme 
lines which can be put through the points under consideration. 
$ Even for much earlier times we can achieve a reasonable master curve by this kind of superposition (Oono 
and Puri 1988a). However, very long times cannot be fitted to this master curve. 
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noisy case are for times 2000, 2900, 3800, 4700 and 5600. Again, the data presented 
for the noisy case are also from both sides of the exponent crossover time. Notice 
that, in these time regimes, both the noiseless and noisy cases have the same master 
curve for moderate values of k / ( k ) ( t ) .  However, the tails of the curves, which corre- 
spond to relatively (compared to pattern size) short wavelength fluctuations, are quite 
different though this difference is not evident on the scale of figure 4. Porod’s law 
(Porod 1983) is not satisfied for either of the cases. This is a result of the non-zero 
thickness of the walls, as we discuss elsewhere (Oono and Puri 1988b). For the noiseless 
case, the tail of the curve drops off faster than x - ~ ,  where x = k / ( k ) (  t ) .  There is a 
‘fake Porod’s law’ in that the data in the extreme tail flatten out. However, this is the 
result of lattice discretisation. For the noisy case, the initial decay of the tail is faster 
than x - ~  as expected. However, because of noise-induced raggedness on very small 
length scales, the extreme tail of the curve decays slower than x - ~ ,  as in the Monte 
Carlo case. 

We can summarise our results as follows. 
(A) Irrespective of whether the models are deterministic or stochastic, the long-time 

behaviours are the same. In particular, we get the same exponent (-0.33) and expect 
to get the same master scattering function asymptotically. 

(B) For earlier times the exponents are definitely smaller than 0.33 and are closer 
to 0.25. The crossover time increases with increase in the amplitude of noise. 

Since our models can be derived by a special discretisation method from the CHC 

equation, similar results should be obtained for the long-time behaviour of the CHC 

equation also. 
Our result (A) strongly supports the theoretical consensus (Ohta er al 1982) that 

noise is unimportant in the true scaling regime. Hence we can use our deterministic 
model to study the asymptotic behaviour of spinodal decomposition. Our result (B) 
suggests that extant Monte Carlo simulations have not been performed for a sufficiently 
long time. If we coarse grain a spatial configuration with highly ragged boundary 
walls, we get a configuration with soft boundary walls, i.e. broad kinks relative to the 
typical pattern size. In such a configuration, surface diffusion becomes much easier 
than in the hard-wall case and this results in a smaller exponent (=0.25). To verify 
this we have performed a long-time calculation with A = 1.2, which gives rise to softer 
walls than the case with A = 1.3. We find that this results in a delay in the exponent 
crossover time (-4000 steps), though the asymptotic exponent is still -0.33. Thus, 
what is crucial to the crossover is not the actual size of the pattern but rather the ratio 
of wall width to the pattern size. Furukawa (1987) has recently argued that the crossover 
time is proportional to (wall thickne~s)~.~’ .  

We claim that spinodal decomposition modelled by our CDS or by the CHC equation 
has an asymptotic exponent of 0.33. An exponent smaller than this is a strong indication 
of insufficient calculation time and/or freezing into metastable states because of the 
smallness of systems used. In our simulation the observation of the crossover to the 
asymptotic exponent is enabled by the numerical efficiency of our modelling scheme. 

We are grateful to T Ohta, H Furukawa and Y Shiwa for many useful discussions and 
comments. We especially benefited from T Ohta’s lectures. We are grateful to M 
Salamon for his interest in and generous support of our project. Our simulation was 
facilitated by V Metze. Finally, we thank C Yeung for his critical reading of the 
manuscript and his independent confirmation of our results. This work was, in part, 
supported by the NSF grant DMR-84-15063 through MRL. 
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